LANGUAGE OF LEAN

The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Internal Setup

Internal Setup, also known as Machine Changeover or Equipment Changeover, is a critical aspect of Lean Manufacturing. It refers to the process of switching a production machine from one product or production run to another.

Internal Setup, also known as Machine Changeover or Equipment Changeover, is a critical aspect of Lean Manufacturing. It refers to the process of switching a production machine from one product or production run to another. This process can be time-consuming and impact the overall efficiency of a manufacturing plant. For this reason, Lean experts have developed techniques to optimize the Internal Setup process and minimize downtime.

The Internal Setup process can be seen as a non-value-adding (NVA) activity. NVA activities are those that do not directly contribute to the production of a good or service. In the case of Internal Setup, it is necessary but does not add any value to the final product. The goal of Lean is to minimize NVA activities, and the Internal Setup process is no exception.

One of the key strategies for optimizing Internal Setup is to standardize the process. This can be achieved by creating detailed Standard Operating Procedures (SOPs) that outline each step of the setup process. SOPs should include clear instructions, diagrams, and photos to help guide employees through the process. The SOPs should also be reviewed and updated regularly to ensure they are up-to-date and accurate.

In addition to standardizing the process, Lean experts also focus on reducing the time required for Internal Setup. This can be achieved through a combination of reducing the number of steps required and streamlining the process. For example, the use of Quick Changeover fixtures or tools can reduce the time required to changeover a machine. Other strategies include minimizing the number of tools required, using visual aids to guide employees through the process, and using checklists to ensure all steps are completed.

Another important aspect of optimizing Internal Setup is employee engagement and involvement. Lean experts believe that employees who are involved in the process are more likely to take ownership of the process and be more committed to making it as efficient as possible. Encouraging employees to identify areas for improvement and participate in Kaizen events can also help drive continuous improvement.

Finally, it is important to monitor and evaluate the Internal Setup process on a regular basis. This can be done by tracking key performance indicators (KPIs) such as changeover time, number of changeovers, and machine downtime. The KPIs can be used to identify areas for improvement and measure the success of continuous improvement initiatives.

In a nutshell, Internal Setup is a critical aspect of Lean Manufacturing and Operational Excellence. To optimize the process and minimize downtime, Lean experts focus on standardizing the process, reducing the time required, involving employees, and monitoring and evaluating the process. By following these principles, manufacturers can achieve a more efficient and streamlined Internal Setup process, resulting in increased productivity, reduced waste, and improved bottom-line results.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Perfection

Perfection is a goal that many organizations strive for, and it is no different in the manufacturing industry.

Perfection is a goal that many organizations strive for, and it is no different in the manufacturing industry. By striving for perfection, manufacturers can improve the quality of their products, reduce waste, and increase efficiency. But how exactly can perfection be achieved in the manufacturing industry?

One of the key components of achieving perfection is through the implementation of a continuous improvement mindset. This involves constantly looking for ways to improve processes, systems, and products. This could include implementing new technology, streamlining processes, or making changes based on customer feedback. By continuously seeking out ways to improve, manufacturers are able to stay ahead of the curve and remain competitive in an ever-evolving industry.

Another critical component of achieving perfection in the manufacturing industry is through effective communication. Communication is key when it comes to identifying and addressing areas for improvement. Whether it is between departments, between management and employees, or between a manufacturer and its customers, effective communication is essential to achieving perfection.

Another way to achieve perfection in the manufacturing industry is through standardization. By establishing and following standardized processes, manufacturers are able to reduce waste, improve quality, and increase efficiency. This could involve standardizing equipment, tools, and work processes, or even creating a standard operating procedure manual that outlines the steps involved in a particular process. By having standardized procedures in place, manufacturers are able to ensure that their products are of the highest quality and that their processes are as efficient as possible.

Quality control is another critical component of achieving perfection in the manufacturing industry. This involves inspecting products and processes to ensure that they meet the standards set by the manufacturer. Quality control processes could include regular inspections, audits, and testing of products, as well as processes such as supplier selection and product design. By implementing a robust quality control system, manufacturers are able to identify and address any issues before they become major problems.

Investing in training and development is another important step in achieving perfection in the manufacturing industry. By providing employees with the training and resources they need to succeed, manufacturers are able to improve the skills and knowledge of their workforce. This could include providing employees with training on new technologies, new processes, or even soft skills such as effective communication and teamwork. By investing in their employees, manufacturers are able to improve their overall operations and move closer to their goal of perfection.

In a nutshell, achieving perfection in the manufacturing industry is a goal that can be achieved through a combination of continuous improvement, effective communication, standardization, quality control, and employee training and development. By striving for excellence in all areas of their operations, manufacturers are able to remain competitive, improve the quality of their products, and provide customers with the best possible experience.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Production Smoothing (Heijunka)

Production smoothing, also known as Heijunka, is a key aspect of modern operations management. It refers to the leveling of production to match customer demand, while maximizing efficiency and minimizing waste.

Production smoothing, also known as Heijunka, is a key aspect of modern operations management. It refers to the leveling of production to match customer demand, while maximizing efficiency and minimizing waste. This technique has been proven to be an effective way to manage production processes and increase competitiveness in the marketplace.

The objective of production smoothing is to create a steady flow of products and services, reducing the variability and fluctuations in the production process. This helps to minimize the waste and resources associated with overproduction, excess inventory, and bottlenecks in the production line. By leveling production, companies can better predict customer demand and adjust their production processes accordingly.

One of the primary benefits of production smoothing is the reduction of waste in the production process. By leveling production, it minimizes the need for excess inventory and eliminates the waste associated with overproduction. This helps to minimize the costs associated with storage, handling, and transportation of excess inventory, while improving overall efficiency.

Another advantage of production smoothing is the improvement of customer satisfaction. By better predicting and matching customer demand, companies can ensure that they have the right products and services available at the right time. This helps to build stronger relationships with customers and improves the overall perception of the company.

To implement production smoothing, companies must first understand their customer demand patterns and the production processes that support them. This requires a thorough analysis of the production line, including the identification of bottlenecks and areas of waste. The company should then develop a production plan that balances customer demand with the production processes to create a steady flow of goods and services.

The company should also implement effective communication and collaboration between all departments, including sales, marketing, engineering, and production. This helps to ensure that all processes are aligned and working together towards the common goal of production smoothing. The company should also consider the use of technology and equipment to automate the production process and improve efficiency.

It is also important to engage employees in the production smoothing process. By involving employees in the implementation and ongoing management of production smoothing, companies can tap into their expertise and insights, and build a culture of continuous improvement. Employees should also receive training and development opportunities to enhance their skills and knowledge in production smoothing techniques.

In a nutshell, production smoothing is an effective way to manage production processes and increase competitiveness in the marketplace. By reducing waste, improving customer satisfaction, and engaging employees, companies can create a steady flow of goods and services, and improve their overall production efficiency. By embracing this technique, companies can achieve operational excellence and maintain their competitive edge in the marketplace.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Rapid Improvement Event

Rapid Improvement Events, also known as Kaizen events, are a powerful tool for improving production processes in every industry.

Rapid Improvement Events, also known as Kaizen events, are a powerful tool for improving production processes in the manufacturing industry. They are focused, short-term initiatives aimed at solving specific problems and improving processes in a rapid and efficient manner.

At the heart of a Rapid Improvement Event is the involvement of a cross-functional team of employees, each bringing a unique perspective and skillset to the table. The team works together to identify and solve problems, test new ideas, and implement solutions that can have an immediate impact on the production process.

One of the key benefits of Rapid Improvement Events is the speed with which they can deliver results. By focusing on a specific problem and working together as a team, significant improvements can be made in just a few days or weeks. This can be especially valuable in the manufacturing industry, where time is often of the essence and even small improvements can make a big difference.

To ensure the success of a Rapid Improvement Event, it's important to follow a structured methodology. This typically includes the following steps:

  1. Define the problem and scope of the event. What is the specific issue that needs to be addressed, and what is the desired outcome of the event?

  2. Assemble the cross-functional team. Choose team members who have a strong understanding of the problem and can bring a variety of skills and perspectives to the table.

  3. Conduct a thorough analysis of the problem. Gather data, observe processes, and engage in root cause analysis to understand the underlying cause of the problem.

  4. Develop and implement a plan of action. Based on the findings of the analysis, create a plan of action that addresses the root cause of the problem and implements solutions that will improve the production process.

  5. Implement and monitor the changes. Once the plan of action is in place, implement the changes and monitor the results to ensure they are having the desired impact.

  6. Reflect and celebrate successes. Reflect on the successes of the event and celebrate the improvements that were made.

Rapid Improvement Events are a powerful tool for improving production processes in the manufacturing industry. By bringing together a cross-functional team, focusing on a specific problem, and following a structured methodology, organizations can achieve significant improvements in a short amount of time.

In a nutshell, it is important to embrace a continuous improvement mindset and actively seek out opportunities to improve production processes. Rapid Improvement Events provide a structured and efficient way to do just that, delivering results that can have a lasting impact on an organization's success.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Product Machine Matrix

The Product Machine Matrix is a methodology that can be used in the manufacturing industry to improve production processes and achieve operational excellence.

The Product Machine Matrix is a methodology that can be used in the manufacturing industry to improve production processes and achieve operational excellence. The idea behind this approach is to create a matrix that matches the type of product being produced with the appropriate machine for that product.

The first step in implementing the Product Machine Matrix is to analyze the current production process and identify areas where improvements can be made. This can be done through the use of data and performance measurement tools, as well as by observing the process and gathering feedback from employees.

Once the areas for improvement have been identified, the next step is to determine the optimal machine for each type of product. This involves considering factors such as the complexity of the product, the volume of production, and the skill level of the operator. It may also be necessary to make changes to the existing machines or to purchase new equipment in order to meet the needs of the production process.

The Product Machine Matrix also requires the establishment of standard work procedures for each machine and product type. This helps to ensure that the production process is consistent and efficient, and it also provides a roadmap for continuous improvement. Standard work procedures should be regularly reviewed and updated based on performance data and feedback from employees.

Another important aspect of the Product Machine Matrix is the need for visual management. This involves creating clear and easy-to-understand visual aids, such as work instructions and flow charts, that help to guide employees through the production process. This helps to prevent errors and improve productivity, as well as making it easier for employees to quickly identify and resolve any issues that may arise.

To be effective, the Product Machine Matrix must be integrated into the overall culture of the organization. This requires the commitment and engagement of employees at all levels, as well as a focus on continuous improvement and a willingness to embrace change. Regular training and communication is also key to the success of the methodology, as it helps to build the necessary skills and knowledge, and ensures that everyone is working towards a common goal.

In a nutshell, the Product Machine Matrix is a powerful methodology that can be used to improve production processes in the manufacturing industry. By carefully matching the type of product with the appropriate machine, and by establishing standard work procedures and utilizing visual management techniques, organizations can achieve operational excellence and drive continuous improvement. With the right approach and commitment, this methodology can deliver significant benefits to any organization looking to optimize its production processes.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Inventory

Inventory is often viewed as a necessary evil, as it provides a safety net to ensure that products are available to meet customer demand.

Inventory is often viewed as a necessary evil, as it provides a safety net to ensure that products are available to meet customer demand. However, from the perspective of Lean Management, inventory can also be seen as a type of waste.

In Lean, waste is defined as anything that does not add value to the customer. From this perspective, inventory can be considered waste because it ties up valuable resources such as space, money, and time without providing any immediate value to the customer. This is because inventory requires storage, which takes up valuable space, and also requires investment in the products themselves. In addition, inventory can lead to obsolescence, as products may become outdated or go out of fashion before they can be sold. Furthermore, inventory can lead to inefficiencies in the supply chain, as products may sit on shelves for extended periods of time before they are sold, adding unnecessary time to the overall lead time.

Despite these challenges, inventory is also an essential component of most businesses. Inventory provides a safety net, ensuring that there are products available to meet customer demand even when there are disruptions in the supply chain. It also allows businesses to take advantage of bulk purchasing discounts, and to manage seasonal variations in demand.

So, how can Lean Management help businesses to steer inventory in the best direction? There are several key steps that can be taken to minimize the waste associated with inventory while still ensuring that the business has the products it needs to meet customer demand.

The first step is to implement a Lean production system. This involves using the principles of Lean Management to streamline production processes and reduce waste in all areas of the business, including inventory management. By reducing waste in the production process, it is possible to minimize the amount of inventory that is required, freeing up valuable resources for other areas of the business.

The second step is to implement a pull-based production system. This involves using customer demand as the driving force behind production, rather than using forecasted demand to determine production schedules. This can help to minimize inventory waste by ensuring that products are only produced when there is a genuine demand for them.

The third step is to implement just-in-time (JIT) inventory management. JIT is a Lean approach to inventory management that involves only ordering the products that are required to meet customer demand, and no more. This can help to minimize inventory waste by reducing the amount of product that is held in reserve, freeing up valuable resources such as space and money.

The fourth step is to implement a continuous improvement program. This involves regularly reviewing inventory levels and processes, and making changes where necessary to reduce waste and increase efficiency. This can help to ensure that inventory management processes are constantly evolving, and that the business is always adapting to changing customer demand.

In a nutshell, inventory management is an important aspect of any business, as it helps to ensure that the right products are available at the right time to meet customer demand. However, from the perspective of Lean Management, inventory can also be seen as a type of waste. By implementing a Lean production system, a pull-based production system, JIT inventory management, and a continuous improvement program, businesses can minimize the waste associated with inventory while still ensuring that they have the products they need to meet customer demand. By adopting these principles, businesses can increase efficiency, reduce costs, and improve overall customer satisfaction.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

ABC Analysis

ABC Analysis is a method used in the manufacturing industry to categorize inventory based on its value and usage.

ABC Analysis is a method used in the manufacturing industry to categorize inventory based on its value and usage. The goal of this analysis is to prioritize items for better inventory management and streamline production processes.

In ABC Analysis, items are divided into three categories: A, B, and C. A items are the most valuable and frequently used, B items are less valuable but still used regularly, and C items are the least valuable and used infrequently. This categorization helps identify areas where improvements can be made to reduce inventory costs and increase efficiency.

To implement ABC Analysis, it is necessary to first gather data on the value and usage of each item in the inventory. This can be done by tracking the usage frequency, cost, and demand of each item. Once the data is collected, the items can be divided into the three categories based on their value and usage.

Once the items are categorized, the focus can be placed on the A items. These items should be closely managed and monitored to ensure they are always in stock and available for production. This may involve implementing a just-in-time (JIT) system for these items, which reduces the amount of inventory that needs to be kept on hand.

B items can also be managed, but to a lesser extent. These items may not be as critical to production, but they still need to be available when needed. Inventory levels for B items should be managed to minimize excess inventory, but not at the cost of stockouts.

C items are typically low-cost items that are not used frequently. The focus for these items should be on reducing the amount of inventory that is kept on hand. This can be done by reducing the order frequency or implementing a safety stock system to ensure that the item is available when needed.

In a nutshell, ABC Analysis is a simple and effective method to prioritize inventory and streamline production processes. By categorizing inventory based on its value and usage, it is possible to focus on the most important items and reduce the amount of inventory that is kept on hand. This leads to cost savings, increased efficiency, and improved production processes.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Kanban

The material in the Kanban System is exclusively oriented to the consumption of your production process.

In this article we want to talk about another classic from Lean Management Kanban or the so called Pull System.

The word Kanban itself has its roots in the Chinese Japanese language and means card, label or sticker. In industrial manufacturing planning systems or general in logistics control Kanban describes a replenishment system for consumed parts according to the amount used steered by cards that give the signal following the Pull Principle.

The material in the Kanban System is exclusively oriented to the consumption of your production process. The cards are a key element of this kind of control system and provide proper information transfer. Kanban control loops from the work station of flexible production control and serves to smooth material flow through your inbound or even outbound logistics. In addition Kanban serves you to implement a sustainable reduction of material stocks, increases the ability to deliver and saves you pure cash.

In an ideal world Kanban would control your entire value chain from the supplier to the end customer. In this way you would have installed an complete smooth supply chain with almost no chance of interruption and massive stocks. And now comes the but – to steer production with Kanban – a continuous monitoring is required for a smooth material supply. To make it short: it requires discipline from all involved parties along the supply chain.

Lets have a look to the development of Kanban.

The first Kanban System was developed by none other than Taiici Ohno (of course) at Toyota Motor in the 1940s. One of the main reasons for the implementation of Kanban was the low productivity and efficiency of Toyota compared to western competitors. With the Kanban System, Toyota achieved a significant change towards flexible and efficient production control that had a massive impact on productions output while at the same time reducing the costs for inventory in raw material, work in progress (WIP) and finished goods.

To give the complete picture it wasn’t implementing the Kanban system itself to drive the success of Toyota, there are other key factors that together where making the difference. Just to name Just in time as an example of key elements of the Toyota Production System. It is and always will be a combination of different methods and philosophy that brings you forward.

In the 1970s the Kanban Concept was adapted in the industry in the USA and Germany. As they haven’t known better, they pretty much copied the complete Toyota Production System (TPS) in order to get the principles running.

Pull or Kanban System

Either way you call it, the material flow is controlled by boxes or cards. Kanban Cards serving in a simple way all information needed to identify what parts are needed in what quantity at what place. The amount typically is defined by the replenishment time at the work station. With the so called two box principle you make sure that the operator never runs short on components. Nowadays there are also digital version of it called eKanban, but the principle behind is the same. The trigger of supply is the Kanban Card starting of the pull chain of material.

To use Kanban efficient, it is not suitable for all parts. Kanban is perfect for small parts with a small amount of variants and a consistent demand. For this reason, you’ll see Kanban Systems in the industry mostly used for C-Parts management. The rest of the components are steered with the support of MRP. Only in rare cases you find that even the supply of big components are controlled with the Kanban methodology.

One nice side effect with Kanban, you can set up the way you can steer your bottleneck. That means, when you have done a proper value stream analysis you know the capacity for your bottleneck and will only order what this process step can handle.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Poka Yoke

Poka Yoke are all mechanisms that prevent unplanned mistakes from happening.

Poka-Yoke is any mechanism that helps to avoid unplanned mistakes. Poka-Yoke is that the application of straightforward, error-proof mechanisms to systematically avoid incorrect assembly, mix-ups or the downstream movement of defective parts. As a result of stable and high-quality methods begin long before the assembly section, simple Poka-Yoke measures will be enforced preventively within the construction and coming up with phase to make sure quality. Poka-Yoke is implemented to avoid: going away out or forgetting process steps, process or operational-related mistakes, incorrect or missing parts, setup or installation errors.

POKA YOKE ポカヨケ ("stupid mistakes - avoidance") is associate ideology that takes a spread of approaches to optimize production processes, particularly assembly. The main target of Poka-Yoke is strive for zero-defect production and to attain it approximately. If defects are detected, the cause is determined. If the cause can be avoided, it's eliminated pretty much as good as doable within the sense of Poka-Yoke and at the best doesn't occur again at all. Poka-Yoke was originally an initiative of Dr. Shingo, Shigeo (新郷 重夫), who is additionally a co-founder of the Toyota production system, of that Poka-Yoke is a core component. Poka-Yoke is beneath the umbrella of Kaizen 改善 ("continuous improvement for the better").

Poka-Yoke may be about recognizing the root causes in time and so eliminating them. Mistakes shouldn't solely be corrected, however prevented the in the longterm by eliminating their root causes. Within the ideal case, in the sense of Poka-Yoke, there are measures that utterly rule out a discovered error by eliminating the cause in the future, e.g. as a result of incorrect mounting is not any longer doable because of fixed given mounting ways (e.g. fitting shapes). Poka-Yoke demands product style ability to make a product design that forestalls errors (avoid incorrect operation) and is powerful against errors (despite incorrect operation no faulty processes). Thus the philosophy of Poka-Yoke doesn't solely begin within the production, however already in the product design.

A widely known everyday example is that the plug of the electric devices and the power outlets, that can't be inserted into the socket the incorrect way round. Measuring instruments may also be designed or programmed in such a way that they will not be misused. Poka-Yoke principles can also be found in other cases, e.g. ATMs dispense your credit card before the payout takes place. Fuel dispenser faucets solely work into the right tank for diesel or petrol, creating it tougher to refuel incorrectly. And so on.

Looking at Poka-Yoke in production "Nobody makes any mistakes" is the target of the Poka-Yoke methodology. Here a list of some mistakes that can typically be found in production:

  • Incorrect positioning of assembly components

  • Incorrect change of a die

  • Incorrect mounting

  • Wrong interpretation of directions

  • Incorrect polarity in electrical connections

  • Incorrect reading of measured values

  • Incorrect connection of hoses

  • Incorrect entries in devices

  • Assembly of wrong components

  • Skipped operations

  • Operation/programming errors on machines

POKA YOKE follows three simple steps
Measurement:

If you can’t measure you can’t control. Simple fixtures or sensors up to high performance camera systems can support the right execution of processes and provides feedback about the correct or incorrect task completion. Measures can be taken by cameras, mechanical, sensor for light and colors, position, vibration, voltage or temperature.

Detection of deviation:

E.g. deviations are determined by checking the amount of tasks done during one operation - has had the operator enough movement to do the job? Are enough components used? (actual-target comparison). Or simple exploitation geometric mismatches when pins or special marking at the workstation are still visible or not used.

Regulation

When deviations occur make sure that measures are taken such as pulling the ANDON CORD by the so called stop the line authority. Only when error-causing steps are cancelled out a permanent production of OK parts can be achieved.

Only when living according to the Poka-Yoke philosophy on a daily basis and following the principles of Poka-Yoke you will be able to achieve with smart automation and trained operators long term success. Root Cause Analysis and sustainable counter measurements are key. In addition each operator should be trained to detect their own faults during operation.

It might seam to be waste to train operators to detect failures, but no matter how much you planing and effort you put in design, failures occur during assembly or manufacturing. Just think about wiring that is now crossing moving components, parts where the collision was not seen during design and so on, trust me the list can be endless. Some failures will be detected with smart automation checking devices. But these are typically very costly and need special trained people to maintain and most of the time these little pieces of technology can only do one job. Here joins Poka-Yoke the game. Cost efficient, failures or incorrect assemblies can’t be passed on and each operator develops an eye for deviation.

Just keep in mind that if you have mass production or small to middle series can determine if you should install a 100% check or if simple Poka-Yokes can get you where you want.

The most important part of Poka-Yoke at all is that failures are detected when they occur and the exponentially rising costs of defective parts passed on are prevented.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

EPEI

EPEI stands for the frequency where production fulfills one complete cycle to produce the same component again.

EVERY PART EVERY INTERVAL

The abbreviation EPEI stands for the frequency at which cycle production makes the same component again. Parts are produced once on one resource.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Value Creation

What the customer is willing to pay for.

The exact opposite of waste is value creation. That is what you aim for with all lean activities. Value creation are all activities that create or add value to your service or product and the customers are willing to pay for. When a service or product has been perceived or appraised to fulfill a customer need or desire as defined, the product or service may be said to have value or worth. Components of value may include quality, utility, functionality, capacity, aesthetics, timeliness or availability, price, etc.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Milkrun

The Milkrun is the preset intralogistics concept to bring raw material, semi finished and finished goods to the place they belong at the time they are needed.

The Milkrun is the preset intralogistics concept to bring raw material, semi finished and finished goods to the place they belong at the time they are needed. The Mikrun is implemented based on existing consumption values, an internal supply cycle is defined in which deliveries on fixed routes are installed with specific times.

Based on these current consumption values, a logistic supply cycle is defined wherein raw material, semi and finished goods are delivered and picked up by a fixed route at a specific time. With this you will also optimize your intralogistics concept in general taking on action for a Milkrun concept.

So what is the idea behind the Milkrun concept.

The term Milkrun comes from the traditional milkman that was supplying milk to homes on a fixed route in a specific time. The milk delivery was based on the consumption of the households, by this only the amount of milk needed was delivered. Empty bottles have been picked up at the same time and brought back to the distribution center. So quite simple full bottle(s) delivered, empty bottle(s) picked up.

The cross company Milkrun
Nowadays the material management got a little bit more complex. Speaking in the external way of logistics a Milkrun is a supplier concept where customers ask for one or more shipping companies to manage different suppliers or customers on after the other in the form of a shipping cycle. In this way, goods and empty containers can be delivered and received at the same time without the need of centralization. The main goal is to have as less as possible empty trucks and at the same time being under full control of external material flow. Tours and deadlines are the guard rails on these cycles, reducing storage space is the nice to have side effect.

The benefits of the Milkrun concept

  • With installing a Milkrun you will be able to reduce shipping times, processing processes and therefore handling costs.

  • Just in Time and Just in Sequence deliveries are possible

  • Your planning is more structured as you will have fixed time frames

  • Less capital needed due to decreasing inventory/stock/WIP

  • You can integrate waste and empty container management

  • Increase of sustainability due to ecologically smarter transportation routes

Of course there are also some challenges with the Milkrun concept

  • Time consuming planning as quantity, duration, replenishment time, etc. needs to be considered

  • Processes and products need constant supply

  • Outbound Milkruns can be delayed by traffic or weather conditions

  • Economically relevant for larger business or higher demands of goods

  • Reliable supplier for products and transport needed

One last note for the internal Milkrun

Inbound the concept can be used in both ways, intralogistics and manufacturing. E.g. certain raw materials or semi-finished goods can be delivered on a regular basis to predefined workstations where the consumption can simply calculated. And on the fixed route the Mizusumashi can collect empty container and waste from production. This reduces internal ways of operators and guarantees a continuous supply of workstations. The next level would be to interlink all workstations or cells with your internal supply cycles to create an intralogistics flow, reducing the manual replenishment work. To find out what the Mizusumashi is just go here. In short: he/she is the guy who supllies goods on the shop floor in a structured process.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Mentee

The mentee is the student of the mentor.

The mentee is the student of the mentor.

The term mentoring describes the development process in an organization where an experienced person (mentor) passes on his/her knowledge and skills on to a new/unexperienced person (mentee).

The overall aim of a mentoring program is to develop and promote the mentee’s personal and professional growth within or outside your organization.

As described the mentor refers to the role of a personal trainer whose experience supports the development of the mentee. There is also the cross-mentoring approach out there where experienced managers from different departments or companies and their high potentials (mentees) come together for tandems. Cross Mentoring usually is an externally organized program in which the tandems are formed in cross-functional and cross-industry teams.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Minimarket Principle

The minimarket is the smallest version of a supermarket on the shop floor.

The minimarket is the smallest version of a supermarket. The minimarket is typically a small area where operators can take parts from located on the shop floor. Typically C-Parts which are refilled following the Kanban/2-Bin principle. The minimarket is filled by the milkrun which pulls material from the supermarket.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Shop Floor Management

Shop Floor Management supports the consistent development of on-site processes and procedures.

Shop Floor Management (SFM) helps the constant improvement of processes and procedures on the shop floor. The presence of mgmt. level staffing in manufacturing and their recognition on deviations from requirements dramatically hastens decision-making and consequences with inside the on the spot implementation of solutions.

Shop Floor Management really defines control duties and calls for unique modes of conduct. Management is supported via way of means of the utility of unique equipment. Five Shop Floor Management-associated duties are performed on the Shop Floor and are as follows:

  1. Install regular communication

  2. Confirm processes

  3. Empower/Qualify staff

  4. Make it part of the continuous improvement process (CIP)

  5. Conduct problem solving in a structured approach

SFM emphasizes behavior that encourages your staff to resolve issues inside their scope of capabilities and strive for continuous improvement.

For example, management maintains its remarks to a minimum, handiest makes binding commitments, offers however additionally accepts feedback, profits its personal attitude of a situation, lets in errors in mastering situations, does now no longer lay blame and places in vicinity wondering techniques. SFM tools help the effectiveness of SFMgmt. e.g.:

  • Production diary, KPI charts, hassle-fixing sheet, T-cards

  • Shopfloor Management

  • What is Shopfloor Management?

  • Shopfloor Management

  • Basic components of shop floor mgmt

  • Clear management roles and responsibilities

  • Regular communication (Gemba Walks)

  • Key Performance Indicators

  • Problem-solving techniques

  • Visualization

Some explanation of the basics of operational leadership in shop floor mgmt. you organization will for sure profit from clear leadership roles and tasks. Your employees want near help for independent problem solving. Large control gaps, wherein the direct touch among the supervisor and his personnel and associates is reduced, normally do now no longer show themselves.

The Japanese version of a classical institution leader (Hancho), with a totally small management margin and occasional willpower of the personnel, regularly does now no longer suit into the qualified operator in organizations. The excessive qualification of operators is a vital aggressive thing in industry. In order to make suitable use of those capabilities with inside the processes, disciplinary management has the mission of the use of SMART´en to acquire desires at the same time as keeping room for manoeuvre and keeping a very good stability among needs and help.

Managers at the first mgmt. level do now no longer meet those demanding situations via time control seminars, however via greater practical duties and requirement profiles. Examine whether or not it's far important to introduce extra technical management as an alleviation for the first mgmt. level to your organization (CIP coordinator, Kaizen Manager, Process Champion). This feature can stand up from the present functions.

Jointly have a look at the opportunities of dispensing distinctive information regions (5S, set-up time reduction, CIP etc.) with inside the assembly teams expand collectively with you a brand new blending answer specially appropriate for you.

Regular communication

Regular communication is the structured approach to create a framework on a regular basis for opportunities. In this rhythm issues can be carried out and discussed across the management levels. Regular communication is an integral part of the day to day work of all players in your organization.

This way of communication, no matter if you call it huddles, stand up meetings, shop floor meetings, etc. guarantees a continuous flow of information without loss of information itself as it is fast and recurring. A subject matter-associated exchange takes place where employees are enabled to independently define measures, hassle answers and pointers for development and to remedy conflicts as quick as possible.

The continuous flow of information between the departments throughout the complete organization is guaranteed through these regular and short meetings. One positive side effect is that with regular communication you will also calm down daily operations management by clearly separating the topics (e.g. operative commercial enterprise, 5S, CIP, etc.). It is vital that these regular meetings are performed continuously and adhered to in order that normal communique will become independent.

Key Performance Indicators

Regular communication can only exist if the information inside these meetings are defined and standardized. The standard of these meetings is not only the agenda but more important the Key Performance Indicators (KPI). The target of working with KPIs is to have a framework for employees that provides information on the achievement of objectives. When you want to successfully control your production be aware that KPIs are broken down in such a way that they have a direct connection to the operators or designated workstation. Only then they are becoming a real instrument of control by which teams and departments can be measured. The positive thing about KPIs is that with the continuous improvement process paired with a structured problem solving approach all employees will see the effect of implemented measures on the KPIs. To get the full information on KPIs go here.

Problem Solving

Problem solving isn’t always as simple as it sounds, but it clearly shows the effectiveness of clear shop floor management. There are plenty of problem solving methods out there (Ishikawa, 5 Why, A3, Root Cause Analysis, just to name a few) and lean methods (e.g. 5S, set-up time reduction, Hejunka etc.) are well known in the manufacturing industry. But these methods are there to help your organization to deal with more complex issues, this means that they are not really useful for operators that are dealing with daily production but more for a problem solving team consisting of employees from different departments.

To tackle problem solving the right and sustainable way the role of a Kaizen Manager should be installed in your organization in order to steer the problem solving and continuous improvement process. Kaizen Manager help you to get out of this “fire fighting mode” with a sustainable CIP culture.

Visualization

For a clear visualization of running process in your organization, cleanliness and orderliness is the main part of it. Clarity of your processes on the shop floor is the foundation for all lean manufacturing activities. Having the clarity the implementation and maintaining of visual management methods will guide you to a real state of flow.

There are different ways for visualization out there (find a deeper insight here)

The target with visual management and those methods are all the same:

  1. Create transparency

  2. Visual representation of procedures processes and services

  3. Making problems (or bottlenecks) visible

All documents and information are daily updated and right at the place of action clearly visualized for everybody in the organization (e.g. blackboards, Workflow Boards, Shop Floor Boards, Andon Boards, etc.).

Following the PDCA cycle the status of problem solving activities are recorded and visualized. KPIs on different topics are installed and tracked and so on. Important is only that all this information follows also a clear structure and has its own spot on the shop floor (e.g. a shop floor corner). Visualization starts at the workplace of a operator and ends at the management board of the plant manager or owner of the organization.

But in the end it always supports the Continuous Improvement Process in order to bring your organization the next level or simply to overachieve your customers expectations. To get a full insight in Visual Management, read the full article here.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Sensei

In the lean world a sensei is a lean production expert that transfers his knowledge as mentor on to his mentees.

In the lean world a sensei is a lean production expert that transfers his knowledge as mentor on to his mentees.

To be successful with a Sensei it's been revealed that you need to start at the top and find a sensei to work with in order to engage all employees on the shop floor. As Lean activities reach industrial maturity, the role of the Sensei remains a gray area.

It is obvious that your organization needs a Sensei to adapt and successfully implement Lean principles. Therefore, the Sensei position will be your bottleneck in Lean implementation. In every Lean transformation process, one learns at some point that the success of a company consists in learning to learn.

As a little guide, consider the following three effects:

Learning curve: The learning curve of each department and initiative is tracked by their manager in the organization rather than having to compare it to established best practices across your organization.

Spillover: Effective learning practices are passed through hands-on, experiential learning from person to person within your organization rather than through predetermined processes.

Value-Based: Lean as a whole provides a learning framework that aims to balance customer satisfaction (which leads to organizational success) with employee satisfaction (and personal fulfillment) through a set of principles and tools aimed at discovering how MUDA can be reduced and value can be increased . Adding activities in all areas of the organization.

This approach has both sides of the medal, but the weak and the strength are lying in the learning path of each employee. Following the lean principles, every employee is expected to discover:

What do I need to learn: What is my personal challenge in order to better align my work with customer value and thus sustainable and profitable growth with the satisfaction of all my colleagues to reconcile.

Learning from the shop floor: The learning style is deeply embedded in daily operations. Employees are learning results from their support of learning activities at all levels. Because all employees solve their problems or show initiative, everyone is expected to interpret the conclusions of others and find a way to adopt the solutions to their own work. It is the responsibility of the Sensei to support its learners in this learning phase. Learning by doing is the correct way to describe it.

Create a learning environment for your employees: Learning on the job is never easy, especially in today's business climate. Consequently, one of the key functions of a Sensei in the Lean perspective is to create a visual environment for employees where it is easier to recognize than normal and where opportunities for continuous improvement in small steps (Kaizen in Lean jargon) are clearly visible Everyone. A learning environment also means a stable affective environment where mistakes are not punished but seen as a source of learning.

The Sensei is not a boss at all. He or She has no power and can only suggest. The Sensei's task is to help all employees in your organization to develop their own lean thinking through practical exercises in workshops. The Sensei's job is to convince middle managers that solving today's problems will, in the long run, prevent tomorrow's fires.

The essence of Lean is learning while solving problems. This is a difficult task at the best of times, and indeed every person in your organization must be taught to learn how to learn. In relation to managers, the Sensei has five main roles of support:

  1. Finding problems

  2. Tackling problems

  3. Creating problems

  4. Solving problems

  5. And finally learnings from problems

"If you have no problems, you are dead". is a classic lean principle. Perhaps the most important part of Lean's problem-solving learning approach is the initial problem-finding phase. Lean's approach to business is to capitalize on every problem.

Sometimes you WIN sometimes you LEARN!
— Operations Insider
Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

5M Method

5M Method is an other way of describing an ISHIKAWA Diagram.

5M Method is just an other way of describing an ISHIKAWA Diagram. This diagram is pre-structured with five given categories of potential causes: “Man”, “Machine”, “Material”, “Mileu = Environment” and “Methodology”. In a more detailed form of the environment you can further divide it in “management” and “measurement” which then is considered as 7M methodology.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

One Piece Flow

One-piece-flow is a principle to cut production lead times.

The term One-Piece-Flow basically describes the radical reduction of lead times through flow-optimized production. In an ideal state processed parts or components are moved from one process step to the next without any interim storage. The quantity moved consists only of one part or one batch. You will only be able to achieve this when your work systems are closely connected. The transition of a work system to an one-piece-flow oriented system can only succeed if there is a high availability of existing capacities and flexibility.

Getting your production to flow combines increased productivity and increased employee motivation.

As with most of the lean terms the one-piece-flow principle made its way from the Toyota Production System where it is referred as operator centric work flow. Instead of day in and day out performing the same task at a fixed work station the operator moves with the workpiece through the complete process steps, station after station, for which he/she has to be qualified for all process steps. It is quite similar to a Chaku Chaku line, while Chaku Chaku describes a concrete line layout, one-piece-flow is a principle or mindset so to say. The basic idea behind it is to reduce defects through lacks of concentration and increase motivation of operators through variety.

Lean Manufacturing terms might seem complex, but as most of the time, the principle behind is straight forward and quite simple. As they seem to be no brainers they easily get forget about it which will automatically lead to waste. The best example for waste is the so called TIMWOOD(S), where two main drivers are high amount of Work in Progress (WIP) and high inventories.

Now let us have a look how the One-Piece-Flow principle can help.

The principle of One-Piece-Flow is a new form of flow production. In contrast to conventional forms of flow production the worker in the one-piece.flow production does not remain in his place. Generally speaking the operator has no place of his own - he is always moving with the good. This is exactly where the reference to Chaku-Chaku comes from. With the sequence principle, on the other hand, the operator only interacts with the workpiece on one process step.

After on part is finished the operator starts again at the beginning of the line. This procedure comes with certain demands on the assembly line. U-Shape Layout is the most favorite one, as start and end should be as close as possible to each other in order to keep ways short and transition seamless. The U-Shape Layout is also great as raw material and other components are supplied from the outside, what makes the job of the Mizusumashi easier, and the value adding activities are on the inside.

But speaking about the advantages of One-Piece-Flow, the try to make it short:

  • Arrangement of workstations simplifies the arrangement of operators

  • If deviations occur, the operator knows exactly where it is coming from

  • With the CIP the continuous optimization is really driven on a constant basis

  • Applied correctly, lead times are drastically reduced

  • Inventory is drastically reduced

  • Used space on the shop floor can be reduced by 60% compared to conventional production

  • Motivation of operators raises as they are responsible from start to end and do not have this monotone daily routine of just one work station

In addition, the use of U-Shaped assembly lines, and if they are build up on standard profiles or standard shelvings, it gives you a huge amount of flexibility. Where workstations or the complete line can be easily extended, reduced or adjusted to new needs.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

JIDOKA

Jidoka is the Japanese word for automation. It describes a form of automation where machinery stops by itself when defects are detected and notifies humans to clarify what is going wrong.

JIDOKA - the Japanese term meaning automation. In this form of automation the machinery itself is checking the parts produced for defects after processing. With this constant checking of process quality deviations can be directly detected and when defects occur the complete process is automatically stopped until the problem is solved.

You might have come across the word autonomation, which is simply a combination of the words autonomous and automation that describes the automation with still human interactions. JIDOKA has to be seen as a manufacturing principle rather than a methodology. The idea behind JIDOKA is that all machines in the process chain can run without a dedicated operator checking for process stability and quality outcome. If there is a defect or non-conformity of the process, the machine shuts itself down, preventing the defective parts of getting passed on the downstream process steps and for this reason it prevents producing scrap.

In the Toyota Production System, autonomation is one of the main pillar and is also known as intelligent automation as it is firstly focusing on the quality and the ability of a self running system rather than just focusing on the output. You might have also heard the description of automation with a human touch - if a deviation occurs the machine itself will stop the complete manufacturing process and only with the interaction of an operator, after the problem is solved, it can continue production. The upside is pretty clear - you will not produce any defective parts or waste value adding activities on non-conforming components.

With the use of the JIDOKA principle a number of advantages are coming with it:

  • Processing of non-conforming parts is immediately noticed, so that neither scrap nor rework occurs. Furthermore, no defective parts are passed on to the downstream processes steps

  • Since the defects are detected automatically, a 100% end of line inspection is no longer needed within the scope of quality assurance

  • With the help of automatic error detection, operators are no longer needed to monitor machinery, which is no-value adding activity anyway, so it can be declared as waste in the form of waiting time

  • Operators have now the freedom to perform multiple tasks during the same time or are able to dedicate themselves to new tasks at all

  • Maintenance activities will also decrease as crashes or malfunction due to the passing on of non-conforming parts is avoided

  • JIDOKA is the basis of analyzing the root cause of failures and implement sustainable counter measures to avoid these of occurring again

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

KAIZEN

The mother of all lean terms. The change for good.

KAIZEN the mother of all lean terms.

The word Kaizen is a combination of two Japanese words - KAI meaning change and ZEN meaning good. Kaizen is the epitome of continuous improvement and stands for the “change for the good”. Kaizen for your organization means continuous improvement involving everyone.

All together Kaizen is a collection of simple principles for improving your work but also stands for a management philosophy that has turned manufacturing principles upside down the way organizations think and act. The key of all success is that all employee should constantly critically review their processes and workplaces and improve them every day a little more.

You see Kaizen is a fundamental attitude for all players in your organization that results in high quality processes with zero defects on finished goods. Living Kaizen is the continuous strive to improve, simplify or optimize. This ongoing never ending process is therefore best known as the Continuous Improvement Process (CIP).

You can’t say that Kaizen is a methodology or tool, it is a mindset. I can’t emphasize this enough.

“The message of Kaizen is that no day should go by without any improvement in the company”
— Masaaki Imai

Kaizen does not depend on major innovations or fundamental changes, but on the everyday small improvements of your employees. The multiple suggestions for improvements paired with a rapid implementation mentality will show really fast their effect on success. The term of continuous improvement is fairly said just another way of the old fashioned suggestions scheme or idea management, which has a long history in the industry but less successful communicated and accepted.

To make a little list before writing too much I want to make it short. In order to pave the way for Kaizen thinking, a number of principles are linked to it, which should guide the thinking and behavior of all players in your organization.

  • Daily small improvements in all areas of your organization

  • Avoid any waste of material, time and money

  • Consider all downstream process steps as customers and then improve performance and quality

  • Improvements are always possible, it will never stop

  • Constant improvements are made on a small scale and step by step

  • No restrictions in terms of scope; products, services, processes, activities, technology, workplace - everything can be improved

  • Different methods and tools can be used, the decisive factor is the effect, not the procedure

  • Workplaces, work areas and the situation are viewed "on site", things are viewed and analyzed live (Gemba Walks)

  • with constant improvements, higher and higher standards are set and made the rule

  • Kaizen is a task for all employees in the company

All employees of your organization are directly involved in the Kaizen activities and everyone has to participate. To secure the success of Kaizen each individual should invest an adequate amount of time of their working hours in Kaizen activities and focus on their commitment on improvements. As your organization has different departments and by this different employee groups their Kaizen activities are different as well (e.g.):

  • Top management has to introduce and promote Kaizen as the fundamental principle and drive and monitor its implementation. It creates the right conditions within your organization

  • Middle management implements the requirements of top management and ensures that standards are kept. It also promotes the way of thinking by offering appropriate training

  • Team leaders support employees in developing ideas and implementing them. They are responsible for execution and success confirmation

  • The operators or administrators at the operational level work out concrete suggestions for improvement and implement them. This can also be done in small groups. Kaizen employees improve their specialist knowledge and experience by participating in further training courses.

To give you an example of daily Kaizen routines 5S seems the all time favorite.

You can read the full article on how to implement 5S here. But I will make a short excursion on 5S just to explain the way of thinking. 5S prescribes:

Seiri: Sort out all unnecessary objects

Seiton: Clean-up and correct arrangement of needed objects

Seiso: Keeping the workplace tidy so as to achieve the already established standards through 5S

Seiketsu: Establishing regulations for work standards

Shitsuke: Adherence to the Work standards and continuous improvement

Kaizen is always and everywhere its right to be applied.

Even when most of the people think that it is originally developed and deployed for the automotive industry (best known as the Toyota Production System) with clear mass manufacturing and assembly processes, there is no organization, yours included, that can not improve its performance and quality in terms of customer satisfaction, services, products and processes.

You see Kaizen has become a general way of thinking in all organizations and industries.

Thinking about organizations without Kaizen, you’ll see employees stick to rules and procedures with a “not my task” mentality. Only a few managers have to come up with fundamental long term changes. Kaizen on the other hand stands for the involvement of all employees and that everybody has to think every day what he/she can improve, simplify or optimize in his/her area of work for the “change for the good” of the complete organization, securing the long term success of your organization

Read More

Stay Connected


Ad

We want information fast and in a nutshell. We from OI recommend Blinkist* - because it’s simply the best.

* = Affiliate Link