LANGUAGE OF LEAN

The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

FLOW

Flow is one of the key principles of Lean, and it refers to the smooth, uninterrupted progression of work from one step to the next.

Flow is an essential aspect of Lean Management and is closely tied to the value stream of an organization. Lean is a management philosophy that emphasizes the elimination of waste and the creation of value in all areas of a business, from the production floor to the office. Flow is one of the key principles of Lean, and it refers to the smooth, uninterrupted progression of work from one step to the next.

The value stream is the series of activities that a company performs to deliver its products or services to customers. It includes everything from the design and development of a product to the delivery of that product to the customer. The goal of Lean is to optimize the value stream, eliminating waste and ensuring that the flow of work is as efficient as possible.

To achieve flow, Lean experts focus on creating a smooth and continuous flow of work, from the initial stages of design and development to the final stages of delivery and customer service. This requires a deep understanding of the value stream and the identification of any bottlenecks, or areas where work is slowing down or coming to a stop. By removing bottlenecks, Lean experts can increase the speed of work and improve overall efficiency.

One of the key tools used in Lean for optimizing flow is Value Stream Mapping (VSM). VSM is a visual representation of the value stream, showing the flow of work from start to finish, including all the steps involved and the time required for each step. With VSM, Lean experts can identify areas of waste and inefficiency, such as excessive inventory, overprocessing, and wait times.

Another important tool for optimizing flow is Just-In-Time (JIT) manufacturing. JIT is a Lean method that emphasizes the need for production to occur only when it is needed, and no earlier. This helps to eliminate inventory waste and reduces the amount of time spent waiting for parts or materials. JIT also helps to minimize the risks associated with inventory, such as obsolescence, damage, and theft.

Another aspect of flow in Lean is the concept of "pull" production. This means that production should be driven by the demand from customers, rather than by forecasting and forecasting-based production schedules. Pull production helps to ensure that work is only done when it is needed, eliminating the waste associated with overproduction and reducing the risk of obsolescence.

Finally, it's important to understand that flow is not just about efficiency and productivity. It is also about creating a culture of continuous improvement and empowering employees to identify and eliminate waste in their own work. This can be achieved through the use of tools such as Kaizen, a Lean method that encourages employees to identify and suggest improvements to the value stream.

In a nutshell, flow is a critical aspect of Lean Management and is closely tied to the value stream of an organization. By focusing on creating a smooth and continuous flow of work, Lean experts can optimize the value stream, eliminate waste, and improve overall efficiency. Whether through the use of tools such as VSM and JIT, or through a focus on continuous improvement and employee empowerment, flow is a key part of the Lean philosophy and is essential for success in the modern business environment.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Mixed Model Production

We believe that MMP has the potential to bring significant benefits to a production line by increasing efficiency, reducing waste, and improving customer satisfaction.

Mixed Model Production (MMP) is a flexible production strategy that is gaining popularity in the manufacturing industry. We believe that MMP has the potential to bring significant benefits to a production line by increasing efficiency, reducing waste, and improving customer satisfaction.

Mixed Model Production is characterized by the simultaneous production of different models and variations of a product on the same production line. This approach is in contrast to the traditional practice of having a dedicated production line for each product type. In MMP, production is optimized by using a mix of products, models, and variations that can be produced on the same equipment, thereby reducing the need for changeovers, equipment downtime, and material waste.

One of the key benefits of MMP is increased production efficiency. By producing multiple products on the same production line, changeovers and downtime are minimized, reducing the time it takes to produce each product. This increased efficiency results in improved productivity, lower production costs, and higher customer satisfaction.

Another advantage of MMP is reduced waste. The production of multiple products on the same line results in a better utilization of resources and raw materials. This, in turn, reduces the amount of waste generated and the costs associated with waste disposal. Additionally, the reduced downtime results in less energy consumption and a more sustainable production process.

In MMP, the key to success is the ability to schedule production effectively. This requires a deep understanding of the production process, the equipment, and the capabilities of the workforce. A well-designed MMP strategy should be based on a detailed analysis of the production line and a comprehensive understanding of the production process.

The first step in implementing MMP is to identify the different products, models, and variations that can be produced on the same production line. This requires a thorough analysis of the production process and the equipment used. Once the different products have been identified, the next step is to determine the most efficient scheduling of production. This requires a detailed understanding of the production process and the equipment used, as well as the capabilities of the workforce.

The implementation of MMP requires a cross-functional approach that involves teams from different areas of the organization, including production, engineering, and logistics. The success of MMP depends on the collaboration and cooperation of these teams, as well as the effective communication of the MMP strategy to all stakeholders.

In a nutshell, Mixed Model Production is a flexible production strategy that has the potential to bring significant benefits to the manufacturing industry. As a Lean Management and Operational Excellence expert, I believe that MMP has the potential to increase production efficiency, reduce waste, and improve customer satisfaction. However, the success of MMP depends on a detailed understanding of the production process, the equipment, and the workforce, as well as a cross-functional approach that involves teams from different areas of the organization.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Point Of Use

Point of Use (POU) is a key component of Lean initiatives aimed at reducing waste, increasing efficiency, and improving overall production processes.

Point of Use (POU) is a key component of Lean initiatives aimed at reducing waste, increasing efficiency, and improving overall production processes. It is a philosophy that focuses on delivering materials, tools, and equipment directly to the worker at the moment they need them. The goal of POU is to minimize unnecessary movement, handling, and storage of materials, which not only streamlines production but also reduces the risk of damage, loss, and obsolescence.

In traditional manufacturing processes, raw materials and supplies are often stored in central locations, such as inventory rooms, and are retrieved and moved to the production line as needed. This can result in excess inventory, increased lead times, and the need for multiple trips to retrieve materials. Additionally, workers may spend significant amounts of time searching for the tools or materials they need, which reduces productivity and increases the risk of mistakes.

Point of Use aims to eliminate these inefficiencies by bringing materials and supplies directly to the worker at the point of need. This reduces the need for workers to search for materials and increases the speed and accuracy of the production process. POU also reduces the amount of inventory that needs to be stored and managed, which helps to reduce the risk of damage, loss, and obsolescence.

There are several different approaches to implementing POU, each with its own set of benefits and challenges. One approach is to use kanban systems, which are visual signals that tell workers when it’s time to replenish materials or supplies. Another approach is to use automated systems, such as conveyors or robots, which move materials and supplies directly to the production line as needed.

Regardless of the approach used, POU requires careful planning and coordination between all departments involved in the production process. It also requires regular monitoring and adjustments to ensure that the system is working as intended. This can include tracking key performance indicators (KPIs) such as inventory levels, production lead times, and worker productivity.

One of the benefits of POU is that it helps to improve worker morale and job satisfaction. When workers have access to the materials and supplies they need exactly when they need them, they are able to focus on their work without worrying about finding the right tools or supplies. Additionally, POU helps to eliminate the frustration that workers may feel when they are unable to find the materials they need, which can lead to decreased job satisfaction and even burnout.

Another benefit of POU is that it helps to reduce the risk of mistakes and increase quality. When workers have everything they need at their fingertips, they are able to focus on their work without worrying about searching for materials or supplies. This reduces the risk of errors, which in turn helps to improve overall quality and reduce the need for rework.

In a nutshell, Point of Use is an important concept in Lean Manufacturing that aims to reduce waste, increase efficiency, and improve overall production processes. By bringing materials and supplies directly to the worker at the point of need, POU streamlines production, reduces the risk of damage, loss, and obsolescence, and improves worker morale and job satisfaction. To be successful, POU requires careful planning, coordination, and monitoring, as well as a focus on continuous improvement. By implementing POU and other Lean principles, manufacturers can reduce costs, increase efficiency, and improve overall production outcomes.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Standard Work

Standard work is a fundamental principle of Lean manufacturing, a management philosophy that focuses on the elimination of waste and the continuous improvement of processes in order to increase efficiency, quality, and customer satisfaction.

Standard work is a fundamental principle of Lean manufacturing, a management philosophy that focuses on the elimination of waste and the continuous improvement of processes in order to increase efficiency, quality, and customer satisfaction. From the perspective of a Lean management expert, standard work is an essential tool for achieving operational excellence in the manufacturing industry.

Standard work refers to the detailed documentation of the best way to perform a specific task, taking into account factors such as the skills and experience of the workers, the equipment and materials used, and the desired outcome. This documentation should include step-by-step instructions, visual aids, and clear specifications for each step of the process. The goal of standard work is to ensure that each task is performed consistently and to the highest standard possible, regardless of who is performing it or when it is performed.

There are several key benefits to implementing standard work in manufacturing. Firstly, standard work helps to increase efficiency by eliminating waste and reducing variability in the production process. This leads to shorter lead times, lower costs, and improved quality. Secondly, standard work provides a clear understanding of the expected outcome of each task, making it easier for workers to know what is expected of them and to continuously improve their performance. Thirdly, standard work helps to promote a culture of continuous improvement by empowering workers to identify opportunities for improvement and to suggest changes to the standard work documentation.

To implement standard work effectively, Lean management experts typically follow a five-step process:

  1. Define the task: Clearly define what needs to be accomplished and what the desired outcome is.

  2. Observe and document the current process: Observe the current process, and document each step, including the time taken for each step and any variation in the process.

  3. Determine the standard work: Analyze the data from the observation and determine the best way to perform the task, taking into account the skills and experience of the workers, the equipment and materials used, and the desired outcome.

  4. Train the workers: Train the workers on the standard work and ensure that they understand the expectations and how to perform the task to the standard.

  5. Continuously improve: Regularly review the standard work and identify opportunities for improvement.

In addition to the five-step process, Lean management experts also recommend the following ten tips for a successful implementation of standard work:

  1. Start with a few simple tasks and gradually expand the implementation to other areas of the organization.

  2. Engage the workers in the implementation process and involve them in the development of the standard work.

  3. Focus on standardizing the process, not the workers.

  4. Use visual aids, such as flow charts, to help the workers understand the standard work.

  5. Regularly review and update the standard work to reflect changes in the process, the workers, or the equipment.

  6. Foster a culture of continuous improvement by encouraging workers to suggest changes to the standard work.

  7. Make standard work a part of the performance evaluation process for workers.

  8. Use standard work as a tool for training new workers.

  9. Use standard work to identify opportunities for process improvement.

  10. Regularly communicate the importance of standard work and the benefits of implementing it.

In a nutshell, standard work is a powerful tool for achieving operational excellence in the manufacturing industry. From the perspective of a Lean management expert, standard work helps to increase efficiency, improve quality, and empower workers to continuously improve their performance. By following the five-step process and the ten tips for a successful implementation, organizations can reap the benefits of standard work and achieve their operational excellence goals.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Regular Communication

Regular communication refers to the continuous exchange of information between different departments and individuals within an organization.

Regular communication refers to the continuous exchange of information between different departments and individuals within an organization. The aim of this communication is to ensure that everyone is on the same page, working towards the same goals, and that any problems or obstacles are addressed promptly. In this article, we will explore the positives aspects of using regular communication in manufacturing and how it supports shop floor management in three steps.

Improves Collaboration and Cooperation

Regular communication plays an important role in improving collaboration and cooperation within an organization. When everyone is kept informed about the latest developments, it becomes easier for employees to work together effectively. They can share ideas and best practices, identify areas for improvement, and help each other overcome challenges. As a result, teamwork becomes more efficient, and everyone is able to contribute to the success of the organization.

Facilitates Problem Solving

Problems and obstacles are a natural part of any manufacturing process. However, if they are not addressed promptly, they can quickly escalate into bigger issues. Regular communication helps to ensure that problems are identified and addressed in a timely manner. When employees are able to openly communicate with each other, they can work together to find solutions and prevent problems from getting worse. This helps to minimize the impact of any issues on production and ensures that the organization is able to maintain its competitiveness.

Supports Shop Floor Management

Regular communication is also an important aspect of shop floor management. Shop floor management refers to the process of managing the day-to-day operations of a manufacturing facility. Regular communication helps to ensure that everyone is aware of their responsibilities and is able to perform their duties effectively. It also helps to identify areas for improvement and makes it easier for managers to provide feedback and guidance. In addition, regular communication helps to create a culture of continuous improvement, where everyone is encouraged to take an active role in driving progress and improving performance.

In a nutshell, regular communication is a crucial aspect of Lean management in manufacturing. It plays an important role in improving collaboration and cooperation, facilitating problem solving, and supporting shop floor management. By incorporating regular communication into their operations, organizations can ensure that everyone is working together effectively, that problems are addressed promptly, and that the organization is able to maintain its competitiveness.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Cell Production

Cell Production focuses on optimizing the flow of work and improving efficiency in manufacturing and operations.

Cell Production focuses on optimizing the flow of work and improving efficiency in manufacturing and operations. It is based on the concept of organizing work into cells, which are self-contained units responsible for performing a specific set of tasks. The goal of cell production is to minimize waste, increase flexibility, and improve overall performance.

The origins of cell production can be traced back to the 1950s and 60s, when Toyota and other Japanese companies were experimenting with new approaches to manufacturing. Over time, the concept of cell production has evolved and been refined, and today it is widely used in a variety of industries, including automotive, electronics, and consumer goods.

In order to implement cell production effectively, there are several key steps that organizations must take. Firstly, it is important to conduct a thorough analysis of the current state of the manufacturing or operations process, in order to identify areas where improvements can be made. This may involve mapping out the flow of work and identifying bottlenecks or other inefficiencies.

Once these areas have been identified, the next step is to reorganize the work into cells, taking into account the specific requirements of each cell and the skills and expertise of the employees who will be working in them. This may involve rearranging physical work spaces, or changing the way that work is assigned and managed.

It is also important to establish clear communication and feedback mechanisms, so that employees and teams can work together effectively. This may involve setting up regular meetings to discuss performance, or implementing systems for tracking and reporting on key metrics.

In order to ensure a successful implementation of cell production, it is also important to provide training and support for employees. This may involve providing training on the new processes and procedures, or offering coaching and mentoring to help employees develop the skills and knowledge they need to be effective.

Another key aspect of cell production is continuous improvement. This involves regularly reviewing performance and making adjustments as needed, in order to optimize efficiency and reduce waste. This may involve experimenting with different approaches, such as implementing new technologies or streamlining processes, in order to find the best solutions.

In conclusion, cell production is a powerful methodology for optimizing performance in operations and manufacturing. By reorganizing work into cells, minimizing waste, and continuously improving performance, organizations can increase efficiency, reduce costs, and improve overall performance. In order to be successful, organizations must take a structured and systematic approach, and be committed to ongoing improvement.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

MTM

MTM (Methods Time Measurement) is a systematic method for analyzing and optimizing work processes that is widely used in the field of Lean Management.

MTM (Methods Time Measurement) is a systematic method for analyzing and optimizing work processes that is widely used in the field of Lean Management. MTM is based on the idea of breaking down work into small, easily analyzed and optimized tasks, and is therefore an important tool for improving efficiency and productivity in operations.

The origin of MTM can be traced back to the early 20th century, when industrial engineers in Europe and the United States first began to develop time-and-motion studies. These early studies sought to identify the most efficient ways to perform tasks and reduce waste in manufacturing operations. Over time, MTM evolved into a standardized methodology, with clear guidelines and tools for process analysis and improvement.

One of the key features of MTM is its focus on standardizing work processes. This is accomplished by breaking down each task into its component parts and then determining the most efficient way to perform each part. The result of this analysis is a set of standardized work methods that can be used to train workers and ensure consistency in operations.

Another important aspect of MTM is its focus on continuous improvement. The MTM methodology includes regular reviews of work processes and the use of data and analysis to identify areas for improvement. This approach helps organizations to continuously improve their operations and remain competitive over time.

One of the best ways to utilize MTM is in the context of Lean management. In Lean, the focus is on identifying and eliminating waste in all aspects of operations. By applying the MTM methodology to work processes, organizations can identify inefficiencies and then work to eliminate them. This helps to create a more streamlined, efficient, and productive work environment.

Another important application of MTM is in the context of training and development. By using MTM to analyze and standardize work processes, organizations can provide clear and consistent training to workers. This helps to ensure that all workers are performing their tasks in the most efficient way, which leads to improved productivity and reduced waste.

Finally, MTM can also be used in the context of project management. By analyzing work processes in advance of a project, organizations can ensure that they have the resources and capabilities needed to complete the project on time and within budget.

In a nutshell, MTM is a powerful tool for improving efficiency and productivity in operations. Its focus on standardizing work processes and its emphasis on continuous improvement make it an ideal methodology for Lean management and for organizations looking to improve their operations over time.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Set up time

The term "set up time" refers to the amount of time it takes to transition a manufacturing process or production line from producing one product to another.

The term "set up time" refers to the amount of time it takes to transition a manufacturing process or production line from producing one product to another. This time includes all the tasks and activities that must be performed in order to prepare the line for the new product, such as cleaning and changing tools, adjusting machinery, and organizing raw materials and supplies.

Set up time has its origins in the field of manufacturing, where reducing the time required to change over from one product to another has been a critical factor in improving efficiency and productivity. The idea behind reducing set up time is that the less time a production line is idle, the more products can be produced, and the more efficiently the production process can run.

To improve set up time, organizations can use a variety of methods and techniques. One approach is to standardize set up procedures, so that the same steps are followed every time a change over is performed. This standardization helps to eliminate waste, reduce the risk of errors, and speed up the process.

Another approach is to use technology to automate and streamline set up procedures. For example, a company might use barcode scanning to quickly and accurately identify the right tools and supplies for a particular change over, or use robotic arms to change tools and adjust machinery, reducing the amount of manual labor required.

Organizations can also make use of visual aids, such as standard work instructions, to help workers understand the set up process and complete it more quickly. These instructions can be displayed in the form of checklists, posters, or other visual aids that are easy to understand and follow.

In addition, organizations can work to minimize the number of set ups required by batching products or running them in a continuous flow, which reduces the need to change over production lines as frequently.

Finally, it is also important to involve workers in the process of improving set up time. By engaging workers in the process and soliciting their input and suggestions, organizations can gain valuable insights into how the process can be improved and find new and innovative ways to reduce set up time.

In conclusion, improving set up time is critical for organizations that want to optimize their production processes and improve efficiency. By using a combination of standardization, technology, visual aids, continuous flow, and worker involvement, organizations can reduce set up time, minimize waste, and improve productivity

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Hoshin Kanri

Hoshin Kanri, also known as Policy Deployment, is a strategic planning and management methodology originating from Japan

Hoshin Kanri, also known as Policy Deployment, is a strategic planning and management methodology originating from Japan. The term "Hoshin" means "compass" or "direction," and "Kanri" means "management." Hoshin Kanri is a system that aligns an organization's strategic goals with its daily operations and decision-making processes.

Hoshin Kanri was first developed in the late 1950s and 1960s at the Japanese automobile manufacturer Toyota and is often associated with the Lean Management philosophy. It was introduced as a way to ensure that the company's long-term goals were being pursued throughout the organization, from top management to the shop floor. The methodology has since been adopted by many other companies and industries, including manufacturing, healthcare, government, and service organizations.

Hoshin Kanri is a cyclical process that involves four main steps:

  1. Setting strategic objectives: The first step in Hoshin Kanri is to set the organization's strategic objectives for the coming year. This is typically done by top management, who establishes the company's overall vision and direction.

  2. Creating an action plan: Once the strategic objectives have been set, the next step is to create an action plan for achieving them. This involves breaking down the objectives into smaller, measurable goals and identifying the specific actions that will be taken to achieve each goal.

  3. Implementing and monitoring the plan: The third step is to implement and monitor the action plan. This involves communicating the goals and action plan to the rest of the organization and ensuring that everyone is working towards the same objectives. Regular progress updates are made to ensure that the plan is on track.

  4. Continuously improving: The final step in the Hoshin Kanri process is to continuously improve. This involves reviewing the results of the action plan and making adjustments as necessary to ensure that the organization's objectives are being met.

One of the key features of Hoshin Kanri is that it promotes a culture of continuous improvement by involving all employees in the process. By aligning the company's daily operations with its long-term goals, Hoshin Kanri helps to ensure that everyone in the organization is working towards the same objectives and that progress is being made towards achieving them.

The best way to utilize Hoshin Kanri is to adopt it as a company-wide system and involve all employees in the process. This involves:

  1. Clearly communicating the company's strategic objectives and action plan to everyone in the organization.

  2. Encouraging all employees to participate in the continuous improvement process by providing regular training and development opportunities.

  3. Regularly monitoring progress and making adjustments to the action plan as necessary.

  4. Celebrating successes and sharing best practices with others in the organization.

  5. Continuously reviewing the results of the Hoshin Kanri process and making improvements as necessary to ensure that it remains an effective tool for achieving the company's goals.

In a nutshell, Hoshin Kanri is a powerful tool for aligning an organization's strategic objectives with its daily operations and decision-making processes. By involving all employees in the process, it helps to ensure that everyone is working towards the same objectives and that progress is being made towards achieving them. To get the most out of Hoshin Kanri, it is important to adopt it as a company-wide system and continuously review and improve the process.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Push Principle

The Push Principle Concept/Term refers to a production system where material and products are manufactured and moved along the production line based on a predicted demand, rather than actual demand.

The Push Principle Concept/Term refers to a production system where material and products are manufactured and moved along the production line based on a predicted demand, rather than actual demand. This system operates under the assumption that the customer demand can be accurately forecasted and the production line can be appropriately scheduled to meet that demand.

However, the Push Principle often leads to negative impacts on operations. One of the main problems with this system is the assumption of accurate demand forecasting. In reality, customer demand is highly unpredictable and can fluctuate rapidly, leading to overproduction and inventory buildup. This excess inventory creates significant problems such as storage and handling costs, obsolescence, and potential quality issues.

Additionally, the Push Principle often results in an inefficient utilization of resources. The production line is designed to produce a set amount of product, regardless of actual demand. This can lead to idle time and equipment, increased energy costs, and reduced production capacity. The production process is also disrupted by production line breakdowns, worker absences, and equipment failures, resulting in increased downtime and decreased efficiency.

Another negative impact of the Push Principle is that it can lead to a lack of focus on customer needs. The emphasis is on meeting a predetermined production schedule, rather than meeting the actual needs of the customer. This can result in an overproduction of products that are not needed, as well as a lack of flexibility to adapt to changing customer demand.

To mitigate these negative impacts, Lean Management experts advocate for the implementation of the Pull Principle. The Pull Principle is a system where production is based on actual customer demand, rather than a predicted demand. This system allows for a more flexible and efficient utilization of resources, as well as a greater focus on meeting the actual needs of the customer.

In a nutshell, the Push Principle can lead to negative impacts on operations such as inventory buildup, resource inefficiency, and a lack of focus on customer needs. Lean Management experts recommend the implementation of the Pull Principle as a more efficient and effective alternative. By focusing on actual customer demand, organizations can achieve greater operational efficiency and meet the needs of their customers.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

JIT

Just-in-Time (JIT) is a manufacturing and inventory control system in which raw materials, components, and finished products are delivered to the production line exactly when they are needed.

Just-in-Time (JIT) is a manufacturing and inventory control system in which raw materials, components, and finished products are delivered to the production line exactly when they are needed. The goal of JIT is to minimize inventory levels and reduce lead times, while maintaining high levels of production efficiency.

JIT is a pull-based system, which means that production is driven by customer demand rather than by a production schedule. This is achieved by using Kanban, a signaling system that alerts the supplier to send more materials or components when the inventory level of a specific item reaches a predetermined minimum level.

The origins of JIT can be traced back to the manufacturing practices of the Toyota Motor Company in the 1950s. It was developed by Taiichi Ohno, an engineer at Toyota, as a response to the inefficiencies he observed in the company's production processes. Ohno recognized that by reducing the amount of inventory and increasing the flow of materials, Toyota could improve its production efficiency and responsiveness to customer demand.

One of the key principles of JIT is the elimination of waste, or "muda" in Japanese. Ohno identified seven types of waste in manufacturing: overproduction, waiting, unnecessary motion, overprocessing, defects, excess inventory, and unused human potential. JIT aims to eliminate these forms of waste by creating a smooth and efficient flow of materials and products through the production process.

JIT also relies on the concept of "one piece flow", which is the production of one item at a time, rather than producing large batches of items. This allows for better control of the production process, as well as the ability to quickly identify and correct any problems that may arise.

Another important aspect of JIT is the use of visual management tools, such as Andon boards and Kanban boards. These tools allow for real-time monitoring of the production process, and can alert workers to potential problems before they become major issues.

JIT also requires a high level of collaboration and communication between suppliers, manufacturers, and customers. This is necessary to ensure that materials and components are delivered to the production line exactly when they are needed, and that finished products are delivered to customers in a timely manner.

JIT has a number of benefits for manufacturers. One of the most significant is that it can help to reduce inventory levels, which can free up valuable floor space, reduce storage costs, and minimize the risk of stockouts. JIT can also help to improve production efficiency by reducing lead times and minimizing downtime caused by waiting for materials or components.

JIT can also help to improve product quality by reducing defects, and increasing the ability to quickly identify and correct any problems that may arise in the production process.

JIT also helps companies to be more responsive to customer demand by reducing lead times and increasing the speed of delivery. This can help to improve customer satisfaction, and increase the chances of repeat business.

JIT also helps companies to be more flexible and adaptable to changes in customer demand. It allows companies to more easily shift production to different products or product lines, which can help to maintain profitability during periods of slow sales.

However, it's worth noting that JIT is not suitable for all industries and companies, it's best applied in companies where the production process is well-defined, the demand is stable and predictable, and the lead times are short. Implementing JIT can also be challenging and requires a significant investment of time and resources to establish an effective system.

Additionally, JIT requires a high level of coordination and communication with suppliers and customers, which can be difficult to achieve. This is particularly true for companies that have a large number of suppliers or customers, or those that operate in

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Kaikaku

Kaikaku first creates the basics to later carry the Kaizen idea into manual production with CIP.

KAIKAKU, which means "radical change" or "revolution" in Japanese, is a key concept in Lean management and operational excellence. It refers to a transformative approach to process improvement that aims to achieve significant and lasting improvements in performance. KAIKAKU is different from other process improvement methods, such as Kaizen, which focus on incremental improvements, KAIKAKU is characterized by a bold, dramatic change in the way a process is performed.

One of the key features of KAIKAKU is that it is not just about improving the existing process, but also about rethinking and redesigning the process from scratch. This approach allows organizations to identify and eliminate sources of waste, inefficiencies, and bottlenecks that may have been present in the process for years. By starting with a blank slate, organizations can create a new process that is more efficient, effective, and sustainable.

KAIKAKU is often used in manufacturing and production processes, where significant improvements in performance can have a major impact on the bottom line. For example, a manufacturing facility might use KAIKAKU to redesign its production process, eliminating bottlenecks, reducing waste, and increasing capacity. This could result in faster turnaround times, higher quality products, and lower costs.

Another key feature of KAIKAKU is that it often involves the use of new technologies and automation. By adopting new technologies and automating processes, organizations can achieve significant improvements in performance. For example, a manufacturing facility might use KAIKAKU to introduce robots, automated inspection systems, or artificial intelligence to its production process. This could result in faster turnaround times, higher quality products, and lower costs.

KAIKAKU also involves the active participation of employees, especially those who are directly involved in the process. By involving employees in the process improvement process, organizations can tap into their expertise and knowledge, and create a sense of ownership and engagement. Employees can also bring valuable insights into the process and suggest new ideas for improvement.

KAIKAKU is also closely linked to the concept of "Just-in-Time" (JIT) manufacturing. JIT is a production strategy that aims to produce the right products at the right time, and in the right quantities, by minimizing waste and unnecessary inventory. By implementing KAIKAKU, organizations can achieve significant improvements in performance and implement JIT successfully.

In a nutshell, KAIKAKU is a powerful method for organizations that are committed to operational excellence and continuous improvement. By rethinking and redesigning the process from scratch, organizations can identify and eliminate sources of waste, inefficiencies, and bottlenecks that may have been present in the process for years. By adopting new technologies and automating processes, organizations can achieve significant improvements in performance. By involving employees in the process improvement process, organizations can tap into their expertise and knowledge. By implementing KAIKAKU, organizations can achieve significant improvements in performance and implement JIT successfully.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

KOSU

KOSU, short for "Key Operating System Units", is a method used in Lean management and operational excellence to identify and measure the critical units of a process that are essential for the overall performance and success of the operation.

KOSU, short for "Key Operating System Units", is a method used in Lean management and operational excellence to identify and measure the critical units of a process that are essential for the overall performance and success of the operation. By identifying these key units, organizations can focus their improvement efforts on the areas that will have the greatest impact on performance.

The basic idea behind KOSU is to identify the critical units of a process that are essential for the overall performance and success of the operation. This can include things like machines, equipment, personnel, and processes. By identifying these key units, organizations can focus their improvement efforts on the areas that will have the greatest impact on performance.

One of the key benefits of using KOSU is that it helps organizations to identify and prioritize the areas of the process that are most critical to performance. By identifying the key units of a process, organizations can focus their improvement efforts on those areas that will have the greatest impact on performance. This allows them to make the most of their resources and achieve the greatest return on investment.

Another benefit of using KOSU is that it helps organizations to identify and eliminate bottlenecks in the process. By identifying the key units of a process, organizations can identify which units are causing delays and bottlenecks in the process, and then take action to eliminate those bottlenecks. This can include things like improving machine maintenance, optimizing production processes, or identifying areas where automation can be used to improve efficiency.

Using KOSU also helps organizations to identify areas where standardization can be used to improve a process. By identifying the key units of a process, organizations can identify which units are taking longer than they should, and then take action to standardize those processes. This can include things like implementing best practices, developing standard operating procedures, or identifying areas where automation can be used to improve efficiency.

In addition, KOSU can be used to identify areas where automation can be used to improve efficiency. By identifying the key units of a process, organizations can identify which units are taking longer than they should, and then take action to automate those processes. This can include things like using robotics, using automated inspection systems, or using artificial intelligence to optimize production processes.

KOSU also plays a critical role in analyzing machine’s capacity. By identifying the key units of a process, organizations can identify which units are operating at full capacity, and which ones have room for improvement. This can help organizations to optimize their production processes, and ultimately, increase their overall production capacity.

In a nutshell, KOSU is a powerful method for organizations that are committed to operational excellence and continuous improvement. By identifying the key units of a process, organizations can focus their improvement efforts on the areas that will have the greatest impact on performance, eliminate bottlenecks in the process, use standardization to improve a process, use automation to improve efficiency and increase their overall production capacity.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Machine Cycle Time

Machine cycle time is a term used to describe the amount of time it takes for a machine to complete one full cycle of operation.

Machine Cycle Time is a term used to describe the amount of time it takes for a machine to complete one full cycle of operation. In the context of Lean management and operational excellence, machine cycle time is a critical metric that can be used to measure the efficiency and effectiveness of a manufacturing or production process.

The basic idea behind machine cycle time is that it measures the amount of time it takes for a machine to complete a specific task or series of tasks. This can include things like setting up a machine, loading raw materials, running a production process, and unloading finished products. By measuring the amount of time it takes for a machine to complete a full cycle of operation, organizations can gain insight into how efficiently the machine is running and identify areas for improvement.

One of the key benefits of measuring machine cycle time is that it can help organizations to identify bottlenecks and delays in the production process. By measuring the amount of time it takes for a machine to complete a full cycle of operation, organizations can identify which machines or processes are taking longer than they should, and then take action to address these bottlenecks. This can include things like improving machine maintenance, optimizing production processes, or identifying areas where automation can be used to improve efficiency.

Another benefit of measuring machine cycle time is that it can help organizations to identify areas where standardization can be used to improve a process. By measuring the amount of time it takes for a machine to complete a full cycle of operation, organizations can identify which machines or processes are taking longer than they should, and then take action to standardize those processes. This can include things like implementing best practices, developing standard operating procedures, or identifying areas where automation can be used to improve efficiency.

Measuring machine cycle time can also help organizations to identify areas where automation can be used to improve efficiency. By measuring the amount of time it takes for a machine to complete a full cycle of operation, organizations can identify which machines or processes are taking longer than they should, and then take action to automate those processes. This can include things like using robotics, using automated inspection systems, or using artificial intelligence to optimize production processes.

Machine cycle time also plays a critical role in analyzing machine’s capacity. By measuring the amount of time it takes for a machine to complete a full cycle of operation, organizations can identify which machines are operating at full capacity, and which ones have room for improvement. This can help organizations to optimize their production processes, and ultimately, increase their overall production capacity.

In conclusion, machine cycle time is a critical metric that can be used to measure the efficiency and effectiveness of a manufacturing or production process. By measuring the amount of time it takes for a machine to complete a full cycle of operation, organizations can gain insight into how efficiently the machine is running, identify bottlenecks and delays in the production process, identify areas where standardization can be used to improve a process, and identify areas where automation can be used to improve efficiency. Ultimately, measuring machine cycle time is a powerful tool for organizations that are committed to operational excellence and continuous improvement.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Quick Response Manufacturing Control

The concept of "Quick Response Manufacturing" (QRM) describes a corporate philosophy which propagates the orientation towards the reduction of lead times as the primary goal of all corporate decisions.

“ Quick Response Manufacturing Control” (QRMC) is a concept developed in the 90’s and describes an organizational philosophy which propagates the orientation towards the reduction of lead times as the primary target of all corporate decisions.

An approach was developed against the backdrop of the thinking that emerged in the 1990s, moving away from specialization and toward strong customer orientation and the resulting process-oriented organization, with the result that the entire organization was fundamentally transformed and aligned to the factor of time. Improved quality, lower prices, and greater responsiveness are accomplished as a result of the company's ongoing focus on the QRMC principles.

The concept of short lead times does not clearly stop when production reaches its limits; rather, all divisions of the complete organization must be incorporated into this strategy and align the targets, as determined by customer needs. Furthermore, this model allows for an outwardly adaptable and quick response to changing customer requirements.

Properties of QRMC

QRMC is distinct from existing "lean management" approaches, which are not in competition with QRMC but rather complementing it.

QRMC is appropriate for usage in businesses where production has the features of a significant number of variants manufactured in small batches with customer-specific characteristics. To make a decision if QRMC is the right approach for your business, see the following matrix.

A paradigm shift from the dominance of cost-based approaches and ways of thinking (e.g. unit costing) to measuring instruments is proposed, with the lead time for customer order fulfillment as the only essential indicator for controlling the overall material flow. It is vital to consistently use the four QRMC core concepts in order to successfully implement the QRMC philosophy in your organization in a durable and broad manner:

  1. Time is crucial

  2. Adaptation of organizational structures

  3. Organizational-wide application

  4. Dynamic toolset

Time is crucial

The common wisdom about work is that the quicker, harder, and greater you work, the more work you accomplish in less time. This mindset is represented in today's control systems, which consider "touch-time" control (value-adding activities) to be the most important component in time efficiency. Because the "touch-time" can be precisely measured without any doubt. And each and every controller assumes: Only what I can measure I can control. However, because touch-time lead times account for only around 5% of all lead time, the cost-cutting potential is modest as most of the time it is already squeezed to a minimum.

Furthermore, no matter what system you look at, the presumption of “faster, higher, further” only applies to a certain point, the break point. See it overstressing the the system. E.g. when the manufacturing input factors (5M) are pushed to their limits, the quality level will drop, toolings will wear out faster or even destroyed, in short: the system will collapse.

But to keep on going, how is the “non-touch-time” (non-value-adding tasks) measured. According the standard, cost-based approach, all expenditures for incoming and finished goods storage are covered including all overhead that is needed on defining processes on how and when a product will be produced. With existing traditional systems, these overhead costs are not really accurate apportioned.

As a rule, overcharges are utilized to spread this cost block among the things. Most of control frameworks don't correspond upward an ideal opportunity to the genuine causes. These overheads, then again, address the costs of time, or all the more explicitly, the expenses of lead times.

QRMC doesn't suggest that upward costs can be allocated all the more effectively, yet rather that more limited lead times mean lower upward expenses. The lead season of associations that attention on a QRMC technique is continually limited, permitting the organization to prosper in market significant numbers (e.g. delivery reliability or delivery time).

It may be challenging trying to begin utilizing QRMC approaches. Toward the beginning of a QRMC project, taking on the QRMC methodology and rules will prompt higher item costs.

The formation of cycle arranged hierarchical units eliminates the division of work into little useful work steps in free handling units (purported QRMC cells). The "autonomous working gatherings" work association standards are utilized in this QRMC cell's rundown steps. Inside the QRMC cell, multi-functional staff has a bigger responsibility, which is addressed in an expansion in "touch-time."

More modest clumps ought to be fabricated, as indicated by QRMC, to upgrade responsiveness. Thus, there are more set-up processes, which raise unit costs. Producing more modest bunches requires a higher recurrence of set-up processes, prompting more noteworthy set-up costs.

How does the lead time consumption influence you in the event that you can deliver on request and not in stock in light of the QRMC drive?

Cost decreases for distribution center terminations, as well as continuous structure uses, staff compensations for material dealing with, and deterioration costs, are completely limited. Notwithstanding these immediate consumptions, managerial expenses, for example, arranging and establish the executives have been brought down essentially.

Inventories ascend in esteem since they are not sold on the grounds that they are not created because of direct client interest.

All things considered, lead times brings down upward expenses. As opposed to the accepted problem of the following expense expansion in customary controlling, an increment in “touch-time" will subsequently bring about a general expense decrease, thinking about hierarchical QRMC structures!

Adaption of organizational structures

With a traditional and capacity arranged construction, an organization working in a confounded and dynamic market environment described by small batches, huge variations, customer specific goods, and intense competition can't achieve the objective of significantly bringing down the lead times. Accordingly, many errands have almost no immediate market reference; the longings of both outer and inner clients are just obscure. Besides, a capacity arranged association is wasteful, with long coordination and choice cycles.

Four areas of activity are determined to meet the points of "responsiveness to the customer" as a vital cutthroat component and leap forward into new aspects as far as adaptability and execution.

  1. Change to cell manufacturing

  2. Group liability rather than hierarchical control

  3. Broadly educated workers > Qualification Matrix

  4. Lead time as key figure

CELL MANUFACTURING

The solid consideration towards customers needs delivers a QRMC cell. This requires the mix of all capacities expected to meet customers assumptions, and henceforth focuses on a painstakingly characterized and limited market and additionally customer target.

Thusly, a QRMC cell involves the express task of man, machine, material, and procedure in a multi-useful structure, as well as their actual mix in one spot. Subsequently, outline work exercises are handled autonomously and completely to make a cell result.

Team responsibility

The drop from a hierarchical organization, in which those in control train e.g. operators what and how they should work, to a self-mindful organization inside a cell, is the following field of activity. Representatives plan and assemble their own corporate philosophies. The notable strategies for autonomous gathering work, like work revolution, work advancement, and occupation growth, come into consideration here. By working autonomously, productivity and product quality are improved endlessly. After totally planned requests have been finished; time is accessible to finish one more part of the QRMC hierarchical design: multi-practical employee qualification.

Multi-Qualified employees

At the point when workers are sick or on vacation, their obligations can be taken over and dealt with by different colleagues. This is the most quick rationale in broadly educating exercises. One more part of "cross functional qualification" is that weariness in positions is killed, and the scope of assignments turns out to be seriously captivating. This inspiration has an unsuitable clarification, however it is considered unreasonably quickly. Other key explanations behind "cross functional qualification" with regards to QRMC includes:

  • Subject to the every day bottleneck, the obligations in a QRMC cell are incredibly adaptable. Various requests might happen at various stations inside the cell, expecting operators to work on an assortment of assignments consistently. The multi-qualified operators upgrade the cell's adaptability, empowering bottlenecks to be kept away from.

  • Advanced machine parks don't constantly request the full focus of operators. Subsequently, the operator should be qualified of handling different machines at the same time.

  • Long-term continuous improvements of process steps inside the QRMC cell are much of the time achieved because of the different work volumes.

Lead times as key figure

To evaluate the cell's performance, the lead time must be utilized and assessed frequently. Overhead costs can only be lessened by concentrating on lead times and the consequent suffering pressure to lower it.

The lead time is defined as the major goal as a result of this knowledge. On the 2nd layer, standard indicator systems and performance indicators do not need to be updated; instead, they operate as assistance and control function. The QRMC number can support this targeted orientation on cell level.

The following formula is used to compute the QRMC number:

Q "RM - Number "= "Lead Time reference period" /"Current Lead Time" ×100

Two points must be predetermined for a sufficient implementation of this new measurement technique:

  1. To commence, the cell must clearly control the start and end points of the lead time measurement ("When does the time starts to run?"). Only when the cell has both the necessary material and the order release, for example.

  2. The time, on the other hand, should only be monitored if the cell has absolute control over the associated time. Only those aspects of the cell's team that it has command on can be assessed.

As a result, employing the QRMC number has a variety of benefits:

While the assessment reveals a falling curve when appropriate measures to minimize the lead time within a cell are adopted, the graphical display of the QRMC number shows an ascending graph. The cell crew is much more inspired by increasing graphs than by dropping graphs.

Smaller lead time reductions at a later period are awarded more than greater lead time reductions at an earlier time by the QRMC number. This is demonstrated by the fact that lowering the lead time from e.g. 1hr to 30min is more difficult than cutting it from 3min to 2min.

Lastly, the QRMC number creates a dynamic competition within the organization, allowing teams and cells to monitor and analyze their progress in lead time reduction.

Organization wide application

In order to adopt the QRMC approach in your production areas it needs to be rolled out in the complete organization.

The fields of administration, purchasing, and product development are clearly referenced. As previously stated, it is also essential to minimize the interfaces by remodeling the cells to QRMC cells. Moreover, conventional process optimization techniques can be abolished, parallelized, integrated, or altered.

Planing your production with QRMC

A Material and Resource Planning (MRP) system helps you with production planning by assessing material requirements, initiating order proposals, and executing orders based on delivery dates.

The MRP system, on the other hand, is only as good as the employees filling it with information. In contrast to the processing time, "buffer times" for the order term are frequently scheduled to ensure smooth workflow and overcome planning flaws. The parameters for an MRP system are fairly straightforward after rebuilding the organization to QRMC cells. The MRP system is used to carry out greater cooperation and scheduling of the material flow from the supplier via the QRMC cells to the end date.

The system uses conventional logic based on lead times to regulate WIP levels, material orders, and backward scheduling by delivery date. The lead time is determined using the QRMC cell's lead time rather than the processing timings for every processing stage.

The MRP system is not used to manage micromanagement for each particular machining phase; this is performed by the cells independently. This implies the MRP system will be simpler, and the buffer times associated with each machining process will be shorter. Adjustments in the lead time as a result of cell optimizations are communicated back to the MRP system.

To synchronize order planning in QRMC systems with several QRM cells, a "capacity forecast" system, the so-called POLCA system, is initiated.

The POLCA (Paired-Cell Overlapping Loops of Cards with Authorization) system relies on the QRM cell structure and guarantees a constant flow of information among two cells. This prevents production from causing material blockages in the next cell. As a result, WIP accumulate between both the QRM cells. POLCA straightens out the varied capacities and lead time per cell, inhibiting the development of these "buffer or backlog stocks."

Due to planning in the MRP system, POLCA only operates on an order if it is required and genuinely needed POLCA aids in the identification of highly frequented bottlenecks in the system, narrowing the range of optimization techniques.

Coming to an end

Through the adoption of the QRMC methodology and its effective implementation, not only are lead times lowered, but also overhead expenses are diminished tremendously.

Additional effects include increased product and process quality, and also high variability against short-term market shifts and fluctuating client behavior. Customer responsiveness in today's marketplaces, with the appropriate items in the right location at the right time, is a crucial component that will result in greater market share. Cost savings and sales growth can both be achieved with QRMC.

In todays and tomorrows competitive market, a strategy that guarantees organizations are more competent and durable.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Layered Process Audit

LPA, or Layered Process Auditing, is a quality technique developed for manufacturing management.

Today we will talk about layered process audits.

LPA, or Layered Process Auditing, is a quality technique developed for manufacturing management. When used correctly, LPA brings your organization to improve quality, minimize scrap and rework, plus reduce customer rejections by driving cultural change throughout your company. To gain a better idea and to understand what LPA means we will have a little deep dive.

Layered Audits are a defined approach that devotes time and resources to ensuring that high-risk procedures and error-proofing mechanisms are consistent and functional. Therefore, three important components make up a Layered Process Auditing System:

  • Full focus on High Risk Processes (HRP) by a list of defined audits

  • Depending on layer of audit the audit itself is performed from various levels of management

  • A system of reporting and follow-up to ensure that containment is maintained based on specific needs. But also, to maintain and drive the continuous improvement process in your organization

A full stack of audits

This part of a Layered Process Auditing System is straightforward. Audits are merely a set of questions aimed to investigate machinery or processes. An LPA system's audits should concentrate solely on parts of the value adding process where deviation poses a high risk of producing defective products. E.g. if you have an end of the line quality check station that is measuring crucial parameters or functions that are critical to customers of your product and the calibration is wrong, you are producing in Takt defective or non-conforming products. No need to mention that you should keep an eye on that process. With the help of a proper LPA system you will have the EOL station within the layers allowing containment and corrective action as soon as the station surpasses set tolerances.

Multiple layers of audits comes with multiple layers of auditors

Multiple layers of authority from across your manufacturing department conduct audits on a regular basis, at a predetermined frequency, in an LPA system. For example, once per shift, the Shift Leader conduct an audit that checks the parameters or settings of your EOL-Station. Another layer of management, which may include process engineers, maintenance staff, or even the human resources department, would circulate through the system performing the exact same audit. The sample audit might be performed once a week or once a month by someone in the layer by assigning a number of auditors to this layer and establishing a timetable that cycles through the system's audits. Yet another layer of management, such as the plant manager or even executive staff (the number of levels in an LPA system can vary enormously from facility to facility, depending on your organizations demands and needs). This extra layer of auditors performs the same collection of audits on a rotating schedule, concluding the example audit once a month or once a quarter, for example.

Countermeasures, Containment Actions, Reporting and Improvement Process

In order to have an effective, a Layered Process Audit system you’ll have to combine analysis, measures and improvement process.

If an auditor observes a non-conformance during an audit, the auditor should not only document their findings but also take quick appropriate action to ensure that defective products do not leave the facility. In order to help with the documentation and immediate actions you can use the A3 report and methodology. Simple but effective. You can find it here. Anyway, the findings should be documented and made readily available to management for further analysis. An LPA system is a handy tool for debugging problem areas and identifying areas that are suitable for improvement actions when combined with a strong system for recording and reporting these audit results. A systematic approach will be discussed in the Shop Floor Mgmt. article.

Though Layered Process Audits may be developed to meet a customer or corporate demand, effective LPA systems are built, implemented, managed, accountable to, and owned by your participatory manufacturing management group. A solid LPA system may help you to take proactive control of your manufacturing operations while also enhancing product quality and business bottom line.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

PDCA

The idea behind the PDCA cycle is to empower employees to independently identify and solve problems. It is also a crucial element of the continuous improvement process (CIP).

The idea behind the PDCA cycle is to empower employees to independently identify and solve problems. It is also a crucial element of the continuous improvement process (CIP).

Many projects in which a culture of continuous improvement (CIP) is to be anchored also fail because of the tools required for this. With the A3 Report, for example, there are such tools. Just for clarity upfront, problem solutions, decision bases and strategies are presented on a sheet of paper in DIN A3 format. The A3 Report provides employees with a kind of template for which analysis and action steps must be taken when solving a problem. This process, in turn, is based on a systematic approach: the PDCA cycle.

The four phases of the PDCA cycle

Of all the quality improvement tools, the PDCA cycle is the most important. It describes the basics of an improvement process and divides it into four phases:

Phase 1: Plan

In this phase the problem and the actual state are described, the causes of the problem are analyzed and the target state is defined. In addition, measurements for reaching the target condition is defined.

Phase 2: Do (Implementation)

In the implementation phase, the predefined measures for achieving the target status are fixed.

Phase 3: Check

In the review phase, the experience gained and the results achieved in implementing the measures are reflected and the measures are readjusted if necessary.

Phase 4: Act

In this phase, the experience is gathered and the problem-solving process is evaluated and standards for future action are derived.

PDCA Cylce

Teams always go through this process when they have identified a problem or a relevant opportunity for an improvement. Then a new PDCA cycle is started with the aim of establishing a new standard in the company which serves as a basis for further improvements. The following case study shows how working with the PDCA cycle works.

The PDCA cycle explained using a case study

The management board of an electrical motor manufacturer has adopted a new strategy to further expand the company's quality leadership in electric motor production and increase customer satisfaction. To this end, the management team defined the following so-called breakthrough targets:

  • The production processes must be state of the art

  • The work must be based on the zero-defect principle

  • The striving for continuous improvement (CIP) should be anchored among the employees

These goals have been broken down to all levels. At a meeting, the head of department pointed out to the group leader that the five pressing lines he supervised produce less than the target of 35k motors per day. The consequences: Supply bottlenecks and customer dissatisfaction. The group leader should now solve this problem. In accordance with the PDCA cycle, the following procedure was followed.

Ad

This reading pick is from experienced manager and lecturer Ron Basu he lists tools and techniques you can implement to make the best use of Six Sigma and Lean Manufacturing, two major quality-control programs. 

Read more here.

PDCA Phase: Plan

The group leader analyzed the production figures of the past weeks. He found that the joining line supervised by the team leader only delivers an average of 32k motors per day instead of 35k. The team leader suspected that this was due to high line rejects. They then took a look at the sorted motors in the quarantine stock. The result: the labelling on almost all rejected motors are displaced or not readable.

The group leader asks the team leader what could be the cause of the problem. His assumption: "The printer is not running perfectly and the application process is not stable. A check of the incoming labels has proven that all material is in specification, so the failure has to be within the printing and application process. The team leader then looked at the scrap figures in the shift reports. It turned out that over 80 percent of the rejected motors are produced during the night shift.

So the group leader and the team leader observed the labelling process in the following night shift. They noticed that the labeling belt occasionally jams in the conveyor belt, which is why the labels are applied offset to the desired location. The team leader suspected that this was due to the fact that the printer mounting and so the printer location was in the wrong position, a further analysis has shown that a new employee has been placed in the night shift and he didn’t understand the correct setting and placement of the printer after exchanging the labeling roll. In addition, it came out that the cartridge has to be replaced after 24 hrs which also was usually coming to the night shift. So the root cause was clear.

The group leader then asked the team leader to formulate a target state for possible countermeasures. He knows through trainings that targets should follow the SMART rule, but on this topic mainly measurable. He wanted to achieve the target by training the new operator. Done deal.

PDCA Phase 2: Do

But the group leader was not satisfied with that. He asked the team leader if he knew exactly how the operator were going to change roles and cartridges if there was a standard operation instruction (SOI) of this process and how to train new operators. The team leader denied this.

In the following night shift, they both watched the change of roles and cartridges by experienced and inexperienced operators. The experienced operators made sure that the labels did not touch the floor during the change and that the printer is in the correct position after replacing the role. The inexperienced, on the other hand, often rubbed the labels on the floor and just pushed the printer in the station without checking the first parts after replacement. Dirt gradually collected in the label dispenser, causing the tape to jam from time to time and the incorrect position of the printer led to misplaced and crushed up labels which in the end of line led to the rejects of the motors.

The group leader asked the team leader and his team to consider possible countermeasures, prioritize them and draw up an action plan. The countermeasures were among others: 

  1. 5S sessions at the end of each shift to restore cleanliness and order in the line

  2. Installation of training matrix in order to know how is able to follow the process and how is experienced enough to train new operators

  3. Install a Poka Yoke fixture to ensure a process stable positioning of the printer

  4. Install a counter with light indication when the cartridge of the printer needs to be replaced after an evaluated amount of labels printed

Based on the prioritization, the team members drew up an action plan. They also agreed:

The current status of the project is always documented on the cell board of the labelling line for the next three months

The progress figures are reported in the daily shop floor meeting – not the team meeting of the cell. It has mgt. focus.

PDCA Phase 3: Check

In the following weeks, the team leader of the cell reported daily the figures and the impact of the measures on the outcome. They also defined further measures on the basis of their experience to date. For example, the machine is always stopped when the label tape reaches into the light barrier, caused by an air blast. The measure was to install a duct for the carrier tape of the labels into a bin placed under the line, easily accessible for the line clean up at the end of the shift.  As a result, the reject rate fell by almost 80 percent after three months. The initially formulated target of 40 percent fewer rejects was achieved.

PDCA Phase 4: Act

After this assessment, the group leader asked the team leader what he wanted to do with regard to standardization. He replied that he would prepare a written description of the optimal process "maintaining the label printer" as well as for training new operators. In addition, from now on he will carry out a daily process control in order to detect target/actual deviations earlier.

The group leader praised the team leader and asked him at the next team leader meeting to inform the team leaders of the four other production lines about the new standard and the findings in the PDCA problem-solving process so that they could learn from the experience. Him himself informed the head of the motor production department that the problem of insufficient motor production had been solved.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

OCT

The Operator Cycle Time is the time an operator needs to fulfill a dedicated process step, including loading and unloading but excluding waiting time.

The Operator Cycle Time is the time an operator needs to fulfill a dedicated process step, including loading and unloading but excluding waiting time.

The Operator Cycle Time is measured from when the operator starts his/her process and is stopped when he/she is ready for the next workpiece (no matter if it’s there or not). Yes I said that the OCT is exclusive waiting time, but not exclusive the waiting time within the process itself. That means if the operator is waiting for a machine, he/she loaded, to finish the operation and unload the workpiece, this waiting time will be included in the OCT.

Most of the time OCT can be seen as the same as “cycle time”. The main difference comes from the waiting time an operator has, while a machine is running a process and the operator him-/herself would be ready for the next piece. This means in the end the OCT is always shorter as the CT. Going even further this means that the OCT can be shortened when installing a HANEDASHI device that autounloads the workpiece after the operation.

As with all lean management activities and targeted increase on productivity and flexibility time is on focus. But make sure to understand the process first, before running improvement actions you have to know what to improve.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

OTED

One touch exchange of a die.

OTED - One touch exchange of a die

Really closely related to SMED - OTED means that changeovers are reduced so that they can be performed in a single step (one touch). It is slightly different to SMED but more difficult to implement.

Depending on your field of industry the defined times to perform a changeovers varies between 1.5 and 1 minute.

To run OTED successfully following actions are required upfront:

  • Reduction of adjustments needed down to zero

  • No fastening with screws needed

  • 100% positive locking between die and tool carrier

  • Proper fitting methods

  • Separation between tooling and function

The target is simply explained: The exchange of a die is done with one single motion.

When having a look at the development of improving changeovers the first step is to implement the single-minute exchange of a die (SMED). SMED helps you in the beginning to figure out how to perform the changeover with less motion. OTED is then the high level of changeovers. As mentioned as SMED can be also understood as single digit exchange of a die, yes this means everything under 10 minutes is SMED, OTED stands for the ultimate target. Through continuous improvement actions on SMED you are striving to reach the state of being able to exchange tooling in the takt of your line with one single motion.

In the end with OTED you have to deal like with all the other Lean Tools, don’t just apply it to be cool and “lean”. If it doesn’t make sense for your operation or process don’t do it. But when you decide to strive for OTED and you and your team are convinced by the promised improvements , make sure to understand the process flow first then take action.

Read More

Stay Connected


Ad

We want information fast and in a nutshell. We from OI recommend Blinkist* - because it’s simply the best.

* = Affiliate Link